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A B S T R A C T   

Although individuals frequently face decisions over multiattribute outcomes, it is unclear how attentional pat
terns to the attributes and options of a choice set impact decisions. For example, are unfixated choice options and 
attributes discounted compared to the currently fixated feature? This paper proposes a model that describes how 
fluctuations in attention to choice set features impacts decision-making. We test and find evidence for the 
model’s predictions across two laboratory studies where participants made incentivized choices between 
consuming multiattribute bundles as their eye movements were recorded. The first study finds that an attentional 
drift diffusion model accurately describes choices, response times, and how these variables are correlated with 
visual attention to attributes and options. On average, only 80% of an unattended attribute’s value and 60% of an 
unattended option’s value were integrated in the evidence accumulation process. The second study exogenously 
manipulated attention to features of the choice set and found this altered choices, as the model predicts. The 
attentional bias identified here causally affects decisions and has implications for understanding multiattribute 
choice.   

1. Introduction 

The vast majority of decisions individuals make on a daily basis are 
over multiattribute options. Common examples include dietary choice 
(e.g., compare options along health and taste attributes), purchasing 
decisions (e.g., compare goods over quality and price attributes), and 
decisions over time (e.g., compare options along their monetary amount 
and delay attributes). Given their prevalence, developing and testing 
theories of how individuals make these choices is a key interest across 
multiple fields (Busemeyer & Johnson, 2004; Glimcher & Fehr, 2014; 
Hastie, 2001; Oppenheimer & Kelso, 2015). 

Although it is intuitive that the relative values of attributes and their 
importance influence choice, the extent to which fluctuations in atten
tion to features of the choice set alters decisions has not been resolved. 
For example, suppose an individual must choose between ordering two 
meals at different prices. Furthermore, suppose the first option contains 
food the individual enjoys more than the second option, but the first is 
more expensive than the second. As the decision-maker selects an op
tion, their attention will naturally fluctuate between features of the 
choice set. Is the probability that the consumer chooses a particular 
option influenced by variables that change the amount of attention 
deployed to specific features (e.g., the presentation of a menu)? Are 
there models that can quantitively explain such effects? Accurate 
decision-making often requires properly estimating and weighting 

attributes which can be hampered when there is an effect of attention on 
choice. 

This paper details two studies designed to test the underlying 
computational process for how attention to options and attributes in 
multiattribute choice influences decisions. The first study modifies and 
tests a multiattribute sequential sampling model that tracks attention, as 
measured by eye gaze. The second study finds that an exogenous 
manipulation of attention to features of the choice set influences de
cisions, which provides evidence for a causal role of attention in mul
tiattribute choice. 

Previous work suggests sequential sampling models provide quanti
tatively accurate algorithmic descriptions of the choice process. Prom
inent examples include the drift diffusion model (Ratcliff, 1978; Ratcliff 
et al., 2016; Ratcliff & Smith, 2004), decision field theory (Busemeyer & 
Diederich, 2002; Busemeyer & Townsend, 1992, 1993; Diederich, 1997; 
Roe et al., 2001), and the leaky-accumulator model (Usher & McClel
land, 2001). Although there are differences between these models in 
terms of the contexts they explain and the methods they use, each as
sumes that individuals make choices by computing a relative decision 
value signal that evolves over time while combining noisy estimates of 
choice feature desirability (Mullett & Stewart, 2016). Furthermore, an 
individual makes a choice once the accumulated evidence reaches a 
threshold. A sizeable literature has found that sequential sampling 
models are biologically plausible, and that the brain may utilize similar 
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processes when making decisions (Britten et al., 1992; Gold & Shadlen, 
2007; Hare et al., 2011; Heekeren et al., 2004; Rangel & Clithero, 2013). 

Traditionally, most sequential sampling models have assumed that 
evidence accumulation is constant throughout a decision. However, 
recent work has proposed that instead of integrating all possible infor
mation into a single evidence stream, processing stages could be 
differentially represented. This work has allowed for a drift rate in the 
drift diffusion model that is permitted to vary (Ratcliff, 1980), distinct 
processing systems that affect preference at different times in the 
decision-making process (Diederich and Oswald, 2016), and an evidence 
accumulation rate that depends on the feature that is visually attended 
to at each moment (Krajbich & Rangel, 2011; Krajbich et al., 2010, 
2012; Fisher, 2017; Tavares et al., 2017; Krajbich, 2019). This last point 
complements a substantial literature that has used process tracing 
methods (e.g., eye tracking or computer mouse tracking) to understand 
how attention is allocated during decision-making (Holmqvist et al., 
2011; Orquin & Mueller Loose, 2013). 

Fig. 1 offers an example to better understand how the model tested in 
this paper can detail the relationship between attention, choices, and 
response times. For example, suppose an individual is making a dietary 
choice between two alternatives placed in front of them and each 
alternative consists of an appetitive and aversive feature. Specifically, 
one might decide whether to order steak (appetitive) with green beans 
(aversive) or salmon (appetitive) with zucchini (aversive) at a restau
rant.1 Given this, there are four unique features an individual could 
attend to as they make this decision: the appetitive steak, the aversive 
green beans, the appetitive salmon, and the aversive zucchini. Fig. 1 
depicts how the evidence accumulation process for choosing between 
these two options, as tracked by the evolution of a relative decision 
value, is affected by attention to each of the four features. Notably, the 
speed at which evidence is gained depends on the currently fixated 
feature. For example, Fig. 1 depicts a scenario in which fixating to the 
appetitive salmon and aversive zucchini features both accumulate evi
dence in favor of choosing the salmon with zucchini option, but fixating 
to the appetitive salmon feature gains evidence at a faster rate, as shown 
by the slope of the relative decision value signal. 

Two features are worth noting about this model. First, whereas the 
details regarding how the relative decision value slope is calculated are 
presented later, the ability for differences in evidence accumulation to 

arise as a function of which feature is currently attended originates as a 
discounting of the unattended option and attribute. For example, when 
fixating to the left appetitive feature, only a fraction of the value of the 
unattended option and the unattended attribute are integrated into the 
relative decision value. This captures the psychological idea that how 
one deploys attention allows one to favor the currently attended feature. 
By fitting the model, one can estimate the extent to which unattended 
variables are discounted. Note that if unattended features were not 
discounted, attention would not influence choices and evidence accu
mulation would be constant, regardless of the fixated feature. 

Second, the model makes several assumptions about the fixation 
process, including that the duration of a fixation is largely unrelated to 
the value of the feature. For example, whereas fixations to different 
attributes might have different lengths on average, fixations within the 
same attribute should not be strongly related to the feature’s value. 
Previous work has frequently supported this assumption in simple bi
nary choice tasks (Krajbich et al., 2010), although some evidence has 
found a relationship between feature value and dwell time in tasks that 
often have a small number of newly learned stimuli (Cavanagh et al., 
2014; Konovalov & Krajbich, 2016). 

There are two main contributions of this work. First, this paper es
timates the extent to which attention alters the integration of both 
choice options and attribute values in a multi-attribute setting. Although 
previous work has used evidence accumulation models to investigate 
multiattribute choice (e.g., Roe et al., 2001; Bhatia, 2013; Trueblood 
et al., 2014; Tsetsos et al., 2012; Usher & McClelland, 2004; 
Wollschläger & Diederich, 2012), combining these models with eye 
tracking data and testing whether unattended options and attributes are 
differentially discounted has not been done. We find only 80% of an 
unattended attribute’s value and 60% of an unattended option’s value 
was integrated in the evidence accumulation process when making a 
fixation to a feature. Most related to this paper, Fisher (2017) used a 
combination of eye-tracking and computational modeling to explore an 
accept-reject decision where participants decided whether or not to 
consume a pair of foods with two attributes. However, that previous 
work was only able to examine fixation biases on attributes, not options, 
because the reference option of consuming nothing was constant and 
always off-screen (i.e., could not be visually attended to). Although the 
studies here use a similar task to this previous work, the new task more 
closely approximates a standard multiattribute choice and allows for the 
estimation of both option and attribute fixation biases. The results find 
that both unattended options and attributes are discounted, and the 
model appears to describe the relationship between attention, choices, 
and response times fairly well. 

Second, this paper uses eye tracking to manipulate fixations to in
dividual features of a multi-attribute choice set in order to determine 
whether there is a causal relationship from attention to choice. Previous 
work has found that both goal-directed (Bee et al., 2006; Glaholt et al., 

Fig. 1. Visual depiction of the maDDM. A rela
tive decision value (RDV) signal evolves over 
time. Its slope is biased towards the currently 
fixated alternative, but the degree of bias depends 
on the fixated attribute. The shaded vertical re
gions depict the feature that is currently fixated. 
A choice is made once the RDV reaches one of the 
two thresholds. In this example, after a brief la
tency period where no feature was fixated, four 
fixations are made (steak appetitive, green beans 
aversive, zucchini aversive, salmon appetitive) 
and the individual chose “salmon and zucchini.” 
For simplicity, noise in the evolution of the RDV 
is not depicted. (For interpretation of the refer
ences to color in this figure legend, the reader is 
referred to the web version of this article.)   

1 Note that the above scenario can be viewed as more general than it may 
initially appear in that it captures the intuition underlying many simple mul
tiattribute choice scenarios. For example, purchasing one of two productsentails 
receiving a beneficial product (appetitive attribute) by paying a monetary cost 
(aversive attribute). Additionally, an intertemporal choice often requires one to 
trade off monetary rewards (appetitive attribute) against delays at which they 
would be received (aversive attribute). 
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2010; Meißner et al., 2016; Pieters & Warlop, 1999) and stimulus driven 
properties (Chandon et al., 2009; Lohse, 1997; Milosavljevic et al., 2012; 
Sütterlin et al., 2008) of the choice set influence attention, and addi
tional work has implicated or suggested that both processes are simul
taneously at work (Ashby et al., 2018; Towal et al., 2013; Ghaffari & 
Fiedler, 2018). Additional work has found that exogenously varying 
attention can alter choices (Armel et al., 2008; Shimojo et al., 2003; 
Ghaffari & Fiedler, 2018; Pärnamets et al., 2015; Fisher, 2021). The 
work here complements these findings by constructing a computational 
model that allows attention to influence the rate of evidence accumu
lation in multiattribute choice, and tests for a causal relationship from 
attention to choice. 

These findings are of additional interest to the decision-making 
community because this model can explain choice patterns and make 
predictions that previous models could not. A critical aspect of the 
model is that it details the relationship between choices and other de
cision process variables, such as the allocation of attention and response 
times. In particular, the model makes a number of quantitative pre
dictions regarding how variables are correlated and these predictions 
can be tested using eye-tracking data. For example, there are several 
predictions about how the order in which features are attended is 
associated with choices, including a positive association between the 
initially attended option and the option that is ultimately chosen. Using 
the model, one can then estimate the probability that the initially 
attended option is chosen. This has important applications for managers 
who decide the spatial location of features as these managers would 
have a quantitative estimate for how simple design changes impact 
decisions. Finally, as practitioners are often interested in “nudging” 
decisions, evidence that multiattribute decisions can be altered through 
visual attention manipulations may lead to policy shifts in how choice 
features are presented to individuals. 

We test and find evidence for the model’s predictions across two 
laboratory studies where participants made incentivized choices be
tween consuming multiattribute bundles as their eye movements were 
recorded. All data can be found at https://osf.io/d2ekr/. 

2. Study 1: A multiattribute attentional drift diffusion model 

The first study was designed to test whether an attentional drift 
diffusion model could explain patterns in multiattribute choice. The 
model represents a linkage between choices, response times, and 
attention. To test the model, we conducted an experiment where labo
ratory participants made decisions over two pairs of foods, or bundles, to 
consume at the end of the experiment as their eye movements were 
recorded. These were multiattribute decisions as each choice was be
tween two visible options with multiple attributes. The model was fit to 
a portion of the data and an untouched portion tested the model’s 
predictions. 

2.1. Method 

2.1.1. Participants 
47 students were recruited to take part in the study and we excluded 

13 of these participants from completing it. Eight were excluded due to 
an inability to properly calibrate the eye tracker (i.e., the eye tracker was 
unable to properly track a participant’s gaze) and five were excluded 
due to their choice patterns in the initial behavioral tasks.2 After these 
exclusions, 34 participants remained (71%, mean age = 22). We planned 
to collect at least 30 usable participants before analyzing the data. All 
participants had normal or corrected-to-normal vision. Participants 
were paid $5 for attending the experimental session and received an 
additional $20 after the experiment terminated. All participants 

reported that they had no food allergies and the study was approved by 
the local Institutional Review Board. Additionally, all participants 
consumed snacks at the end of the experiment. 

2.1.2. Task 
Participants were instructed to fast for four hours before the task. 

Before taking part in the experiment, participants were asked to report 
the last time they ate. A participant was only allowed to take the 
experiment if they reported a time greater than or equal to four hours 
before the start of the session. 

All participants completed three related tasks involving 31 food 
stimuli. These food stimuli were chosen from previous studies to contain 
a mixture of appetitive and aversive foods (Plassmann et al., 2007, 
2010). Participants were informed at the beginning of the experiment 
that there would be three tasks, but were only given the instructions for 
each task immediately before it began. These tasks were modeled 
partially after those in Fisher (2017). 

In the first task, participants entered liking ratings over each indi
vidual food item. Each item was shown individually at the center of a 
computer screen. The image size for each food item was 300 × 300 
pixels and the screen resolution was 1920 × 1080. Participants entered a 
liking rating for each food using a seven-point integer scale (-3 to 3, 
“how much would you enjoy that particular food at the end of today’s 
experiment?”). Participants had not time constraint in which to enter 
their ratings and did so using the bottom row of their keyboard. Each of 
the 31 foods were displayed twice to each participant in a random order. 
These ratings were highly correlated over their two presentations (mean 
correlation = 0.93, SD = 0.07). 

Next, the two ratings for each participant and snack were averaged 
so that participant-specific food categories were created. Foods with a 
mean positive rating were labeled as “appetitive” and foods with a mean 
negative rating were labeled as “aversive.” Food items that had a zero- 
average rating or that received differently signed ratings in their two 

Table 1  

Food Rating Food Rating 

KitKat  2.26 Hot Cheetos  0.16  
(0.96)  (2.11) 

Ghirardelli Milk Chocolate  2.22 Tootsie Rolls  − 0.22  
(0.86)  (1.87) 

Milano Cookies  2.12 Almond Joy  − 0.31  
(0.85)  (2.12) 

Twix  2.07 Garbanzo Beans  − 0.40  
(1.22)  (1.83) 

Crunch  1.78 Sweet Peas  − 0.76  
(1.33)  (1.96) 

Oreos  1.69 Tuna  − 1.03  
(1.21)  (1.93) 

Milky Way  1.49 Artichoke  − 1.29  
(1.33)  (1.77) 

Reese’s Peanut Butter Cups  1.24 Spinach  − 1.41  
(2.06)  (1.67) 

Nature Valley Granola Bar  1.16 Chicken Spread  − 1.49  
(1.56)  (1.49) 

Peanut M&Ms  1.10 Beets  − 1.71  
(1.63)  (1.64) 

3 Musketeers  1.06 Green Beans  − 1.87  
(1.54)  (1.39) 

Snickers  1.04 Spam  − 1.87  
(1.79)  (1.87) 

Doritos  0.90 Sardines  − 1.97  
(1.84)  (1.64) 

Vienna Sausage  0.90 Pureed Carrots  − 2.07  
(2.08)  (1.24) 

Chocolate Pudding  0.69 Ham Spread  − 2.12  
(1.93)  (1.33) 

Butterfinger  0.21    
(2.07)  

Note: Stimuli used in Study 1. Each stimulus contains the mean rating across 
participants with standard deviations below in parentheses. 

2 These participants did not express enough variability in the first rating task, 
as described later, to allow the creation of enough choice sets for the final task. 
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appearances were not included in the remaining tasks. On average, 
participants viewed 16 appetitive foods and 15 aversive foods, as 
described in Table 1. 

In the second task, participants rated all possible combinations of 
bundles of foods, where each bundle contained exactly one appetitive 
and one aversive stimulus. In this task, participants rated “how much 
would you enjoy taking at least three bites from both of the foods shown 
on the screen.” One food was shown on the left-hand side of the screen 
and the other food was shown on the right-hand side of the screen. The 
location of the appetitive food was randomized across trials. The number 
of trials in this task varied over participants as it depended on the 
number of appetitive and aversive snacks (mean = 195, SD = 34). As in 
the first task, ratings were submitted with the keyboard and participants 
were not time constrained when entering their ratings. 

In the third task, participants made binary choices over pairs of food 
bundles (Fig. 2). In every trial, participants were shown two bundles 
from Rating Task 2 and asked to decide which bundle they were willing 
to consume at least three bites from both of the snacks at the end of the 
experiment. The location of the appetitive component of each bundle 
was randomized as either being located at the top or bottom of the 
screen in each trial, but was the same for both the left and right options 
in each trial. The choice task was composed of 300 trials which were 
chosen from all possible bundle combinations. After responding in all 
trials, one trial was randomly selected and the participant’s choice from 
that trial was implemented. This encouraged incentive compatible re
sponses as participants consumed at least three bites from each item of 
their chosen bundles. 

After consuming their chosen bundle, participants were asked to 
complete a brief questionnaire. This questionnaire collected de
mographic information as well as beliefs about the experiment. 

2.1.3. Eye tracking 
To track the role of visual attention to the options and attributes in 

the choice task, we used a desktop mounted SR Research Eyelink 1000 
Plus to record fixations. The eye tracker recorded at 1000 Hz and was 
calibrated immediately before participants began the choice task. We 
used a 13-point calibration exercise to ensure an accurate initial cali
bration. After every 50 trials, participants were informed how many 
trials in the choice task they had completed and took part in a calibration 
drift check to ensure their calibration had not severely degraded over the 
course of the experiment. All participants passed such a drift check at 
each prompting. 

Fixation location and duration was determined using the SR 
Research Eyelink software. In order to determine whether a fixation was 
located on a food image, we defined a region of interest (ROI) around 
each food image by selecting the 300 × 300-pixel image and adding an 
additional 75 pixels in all directions that surrounded the image. This 
procedure attempted to account for measurement noise throughout the 
choice task. Any fixation inside this ROI is treated as if it were a fixation 
to the food image. 

2.2. Results 

2.2.1. Model 
This study was designed to test an attentional drift diffusion model’s 

ability to account for the relationship between choices, response times, 
and how these variables were correlated with fixations in this simple 
multiattribute choice environment. To see why, here we describe the 
model and its main properties. 

The model assumes that individuals make decisions by accumulating 
a relative decision value (RDV) signal over time. Once enough evidence 
is gained in favor of the left or right-side option, a choice is made. 
Specifically, the participant chooses “left” if a threshold is crossed at B =
+1 and chooses “right” if a threshold is crossed at B = -1. Since choice 
time is equal to the time elapsed until the threshold is crossed, the model 
also makes predictions about response times. 

Importantly, the feature values of the choice set and how attention is 
deployed can impact the evolution of the RDV, and hence affect choices 
and response times. The model allows for a fixation bias so that the 
unattended option and attribute are discounted. Specifically, the RDV’s 
evolution depends on the currently fixated attribute as described below: 

RDVt = RDVt− 1 + dμ + εt  

where RDVt indicates the value of the RDV signal at time t, d is a constant 
that describes the accumulation speed, εt is a draw from N

(
0, σ2) and 

reflects the stochastic nature of the process, and μ is equal to: 

μ =

⎧
⎪⎪⎨

⎪⎪⎩

(PL + δNL) − θ(PR + δNR), fixation to PL
(δPL + NL) − θ(δPR + NR), fixation to NL

− ((PR + δNR) − θ(PL + δNL)), fixation to PR
− ((δPR + NR) − θ(δPL + NL)), fixation to NR  

where Pi and Ni refer to the values of the appetitive and aversive foods, 
respectively, on the ith side of the screen where i ∈ {left, right\} , θ and 

Fig. 2. Experimental design for the choice task. Participants made decisions over whether they would prefer to consume the bundle of foods on the left or the bundle 
of foods on the right. Each bundle contained an appetitive food and an aversive food. As participants made decisions their eye movements were recorded. The 
associated timing of each screen is depicted at the bottom of the figure. Each participant saw a fixation cross that had to be fixated to for 500 ms, then had as long as 
they liked to make a choice. Finally, feedback was displayed for 1.75 s before the next trial commenced. 

G. Fisher                                                                                                                                                                                                                                          



Organizational Behavior and Human Decision Processes 165 (2021) 167–182

171

δ are constants between 0 and 1 that reflect the extent to which the 
unfixated option and attribute, respectively, are discounted, and “fixa
tion to” represents the location of the currently fixated feature. The 
psychological intuition for the range of values that θ and δ are permitted 
to take is that when an option or attribute is out of sight (i.e., unfixated) 
it is allowed to be, at least partially, out of mind. In this sense, the 
decision-maker may not account for the true value of an unattended 
feature but only integrate it partially into the decision process. 

The model assumes that a choice option’s value is additive and does 
not contain an interaction term (i.e., a choice option’s value does not 
depend on an interaction of the two attributes). In this sense, the value of 
an option is relatively simple to compute and this additive structure is 
consistent with previous multiattribute decision rules that have used 
linear structures (e.g., Dawes & Corrigan, 1974; Huber, 1979; Keeney & 
Raiffa, 1993). To test this assumption, we first estimated a linear 
regression where we regressed the value of the bundle given in the 
second task on the value of the appetitive and aversive snacks from the 
first task, separately for each participant.3 We found the value of the 
bundle depended on both the appetitive and aversive feature (mean 
intercept = -2.84, SD = 1.13; mean appetitive slope = 0.45, SD = 0.42; 
mean aversive slope = 1.13, SD = 0.64, mean R2 = 0.31, SD = 0.19). To 
test for an interaction effect, we included an appetitive and aversive 
value interaction in the above regression. We found the slope on this 
interaction was 0.09 (SD = 0.32), so it was not significantly different 
from zero, on average (t(33) = 1.65, p = 0.109). Additionally, the mean 
change in R2 after adding this term was only 0.005 (SD = 0.009). 
Together, these results suggest that the additivity assumption, without 
an interaction term, holds in the data. 

Additionally, the model makes important assumptions about the 
fixation process in that the duration of a fixation is largely independent 
of a feature’s value. This means that although fixations to different at
tributes might have different durations, perhaps due to different pro
cessing latencies, fixations within the same attribute should not be 
strongly affected by the feature’s value. For example, fixation duration 
to an aversive stimulus may last longer than an appetitive stimulus, but 
within the aversive stimulus the value will not influence fixations. 
Specifically, the first fixation is to the upper left attribute with proba
bility pUL, upper right attribute with probability pUR, lower left attribute 
with probability pLL, and lower right attribute with probability 
1 − pUL − pUR − pLL. Fixations are then made between the four features 
until a threshold is reached. At the start of each fixation, a maximum 
duration of the fixation is drawn from an empirical fixation distribution 
that depends both the attribute type (i.e., appetitive or aversive), and 
whether the fixation is a first or a non-final fixation. The fixation may 
then reach its randomly drawn duration unless a threshold is achieved 
before the fixation terminates, which would end the choice process. The 
below analysis tests these various assumptions. 

Several properties of the model should be specifically noted. First, 
the model includes a “standard” DDM without a fixation bias as a special 
case, which arises when θ = δ = 1. Note that in this case, unfixated 
options and attributes are not discounted. Due to the computational 
difficulty in fitting large numbers of free parameters in these types of 
models that integrate physiological data, the model here does not 
include variability in the starting point, which is assumed unbiased, or 
the drift rate. However, the model does allow for variance in non- 
decision time as estimated by a latency until the first fixation. 

Second, there is a fixation bias in the model when either θ < 1 or 
δ < 1. When θ < 1, an exogenous increase in attention to the left (right) 

bundle biases the decision maker in favor of choosing the left (right) 
bundle; when δ < 1 an exogenous increase in attention to one attribute 
biases the decision maker in favor of choosing the bundle that dominates 
in that attribute. 

To see why, consider a decision with choice feature values PL = 2,
PR = 3, NL = 2.5, NR = 1.5. First, suppose that there is no attentional 

bias, i.e. θ = δ = 1. In such a case, the RDV has a slope of zero and the 
outcome of random noise determines the choice. Next, suppose there is 
an option-based attentional bias but not an attribute-based bias, i.e. θ <

1 but δ = 1. Note this model captures the aDDM (Krajbich et al. 2010). 
Given this, the slope of the RDV is positive when fixating to either 
attribute of the left bundle, and negative otherwise. Hence, the proba
bility of choosing left depends on the amount of time one fixates to each 
bundle. Finally, suppose there is an attribute-based attentional bias but 
not an option-based bias, i.e. θ = 1 but δ < 1. In such a case, the RDV has 
a negative slope when fixating to the appetitive attribute and a positive 
slope when fixating to the aversive attribute. Hence, the probability of 
choosing left depends on the amount of time one fixates to each attri
bute. When both θ < 1 and δ < 1, the model exhibits different slopes for 
the RDV depending on which of the four features is fixated. Given this, 
the model allows for an asymmetric bias in how attention to attributes 
versus options impacts the evolution of the RDV. 

Finally, fitting the model involves estimating four free parameters, 
{d, σ, θ, δ}. An additional parameter of the model is the threshold’s 
separation, which is fixed at the values +/-1. Note that holding the 
threshold’ height constant comes without a loss of generality since 
multiplying the thresholds, slope, and noise parameters by a constant 
does not alter the data generated by the model (Ratcliff et al., 2016). 

2.2.2. Model fit 
The model’s four free parameters were fit via maximum likelihood 

estimation on the pooled group data.4 We pooled all even numbered 
trials together and estimated group level parameters for this half of the 
data. Appendix A provides additional details the fitting procedure. In 
later sections, we compare how well model estimates fit the untouched 
odd numbered data. 

The parameter vector that had the best fit was (d, σ, θ, δ) = (004, .

075, 0.6, 0.8) which had a log-likelihood of − 29,363. Table 2 reports 
model fit statistics for the best fitting no fixation bias model (i.e., θ =

δ = 1), full fixation bias model (i.e., θ = δ = 0), option only fixation bias 
model (i.e., θ < 1 and δ = 1), and attribute only fixation bias model (i.e., 
θ = 1 and δ < 1). For each of these four alternative restricted models, 
evidence in favor of the unrestricted model was given by a likelihood 
ratio test (p < 0.001 for all four tests). Furthermore, unrestricted model’s 
AIC was lower than each of the restricted models’ AIC, suggesting the 

Table 2  

d  σ  θ  δ  LL AIC p  

0.004  0.075 0.6 0.8 − 29,363 58,733 –  
0.003  0.075 1 1 − 29,692 59,387 < 0.001  
0.004  0.075 0 0 − 29,691 59,387 < 0.001  
0.004  0.075 0.6 1 − 29,380 58,766 < 0.001  
0.003  0.075 1 0.9 − 29,691 59,389 < 0.001 

Note: Best fitting model parameters and fit statistics. The first row reports the 
parameters for the best fitting unrestricted model. The following rows report the 
best fitting no fixation bias model, full fixation bias model, only option fixation 
bias model, and only attribute fixation bias model, respectively. LL denotes the 
log-likelihood and p reports the p-value on a likelihood ratio test from a chi- 
square test of nested models. 

3 In this and all future analyses, we rescale the value of the aversive attribute 
to a positive number by adding 3.5 to each value. We chose to add this number 
as this is the maximum number one must add to ensure all aversive stimuli have 
positive values. Recall the lowest rating for stimuli could be − 3. This is done to 
simplify the interpretation of coefficients and preserves the ordinal relationship 
of the ratings such that higher ratings are more desirable within an attribute. 

4 When preprocessing the data, we removed trials that had a response time 
outside of +/- 2 standard deviations from each participant’s average response 
time (mean = 5.0% of all trials, SD = 1.6%). We do this to reduce the noise 
inherent in the data, although including these trials does not sizably alter the 
results that follow. 
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unrestricted provided a better fit. 
In contrast to fitting the model to the pooled data across all partici

pants, Appendix B also reports an estimation technique and results for 
individual level parameters (see Appendix Table 1). At the individual 
level we observe variance in estimates across participants. For example, 
although the presence of a fixation bias is not universal for all partici
pants (θ: mean = 0.54, SD = 0.27, max = 0.9, min = 0; δ: mean = 0.69, 
SD = 0.33, max = 1, min = 0) these biases do occur for the vast majority 
of participants. Notably, all participants had a fixation bias on the un
attended option and 74% had a fixation bias on the unattended attribute 
(Appendix Fig. 1). Moreover, the average of each parameter over all 
participants is close to the group model fit estimates. 

Although the above model fit results suggest a model with a partial 
fixation bias on the attribute and option parameters fits better than 
various restricted models, the analysis that begins in the next section 
concerns how well the best fitting model can describe various choice 
process properties. 

In order to generate model predictions, we simulated a data set using 
the odd-numbered trial parameters (feature values, fixation durations, 
latencies, etc.) as follows. The model was simulated 5000 times for each 
possible combination of value rating differences between the left and 
right bundles, which ranged from − 4 to + 4 by half unit intervals.5 For 
every simulation, the liking ratings for the appetitive and aversive items 
within both the left and right-side bundles were drawn from the 
empirical distribution of liking ratings conditional on the difference 
between the sum of the left and right-side bundles. 

Additionally, we sampled fixation durations from the empirical dis
tribution of observed pooled group fixations conditional on whether the 
fixation was a first or middle fixation and whether the attended attribute 
was appetitive or aversive. We assumed that participant’s initial fixa
tions were driven by the spatial location of the four features and that 
they first looked to each according to the probability observed in the 
data. Likewise, the saccade process was simulated by using the observed 
probability of making a saccade from a currently fixated feature to a 
different feature, conditional on the feature’s spatial arrangement and 
that the current fixation was not a final fixation. 

Finally, latencies until a first fixation and saccade time between 
feature fixations were sampled from the observed distribution. The sum 
of latencies, feature fixations, and saccade time between feature fixa
tions represents a simulated response time. 

2.2.3. Psychometrics 
Fig. 3 depicts properties of the odd-numbered data compared to the 

simulated data from the best fitting model parameters that were simu
lated over the trial parameters of the odd-numbered data. Predictions 
were made as described in the previous section. In this figure, as well as 
additional figures, the data is shown in black and the out of sample 
predictions are in red. The comparison between the odd-numbered data 
and the simulated data ensures the comparison is an out-of-sample test. 

The psychometric choice curve depicts that the probability of 
choosing the left-hand bundle is a logistic function of the value differ
ence between the left and right bundles (Fig. 3a; mixed-effects logistic 
regression: constant = 0.022, p = 0.542; slope = 0.774, p < 0.001). As is 
common in tests of sequential sampling models, response time was 

Fig. 3. Psychometrics. a) Psychometric choice curve as a function of the value difference between consumption bundles. b) Response times as a function of a trial’s 
difficulty. c) The number of fixations in a trial as a function of difficulty. Red lines indicate the model’s predictions and participant data is shown for the odd- 
numbered trials, with standard errors clustered by participant. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Table 3  

Percent of First Fixations to Each ROI  

Left Right  

Up  57.1  26.6  83.7  
(28.8)  (23.5)  (18.4) 

Down  10.8  5.5  16.3  
(14.0)  (7.1)  (18.4)   
67.9  32.1    

(26.2)  (26.2)  

Note: Percent of first fixations to each ROI. The mean percent of first fixations 
that were made to each region of interest, given the spatial orientation of the 
screen. Columns are horizontal orientation and rows are vertical orientation. 
Means are taken over participant-specific means, and standard deviations are 
reported below in parentheses. 

Fig. 4. Fixation durations. The mean fixation duration for first, middle, and last 
fixations to appetitive and aversive snacks. Standard errors were computed by 
taking a mean for each participant and then averaging over all participants. 

5 Note that although the difference in left and right values can range from − 5 
to +5, relatively few trials fall outside an absolute difference of 4. To reduce the 
noise at the extremes of this range, we restrict our analysis to only the trials 
with an absolute difference of 4. 

G. Fisher                                                                                                                                                                                                                                          



Organizational Behavior and Human Decision Processes 165 (2021) 167–182

173

correlated with difficulty (mixed-effects linear regression: slope =
-0.169, p < 0.001), where difficulty was measured by the absolute value 
of the difference between the sum of left and right liking ratings (see 
Fig. 3b). Appendix Fig. 2 plots the observed versus predicted response 
time for each type of trial based on the difference in liking ratings and 
finds a strong association between the two. Finally, the number of fix
ations increased as difficulty increased (mixed-effects linear regression: 
slope = -0.318, p < 0.001), consistent with the relationship between 
response time and difficulty (see Fig. 3c). As can be seen in the figure, 
the model’s predictions closely match the observed out-of-sample data. 
On average, participants made 5.1 fixations (SD = 1.4) per trial. 

Fig. 3 is reproduced for each participant using the individual model 
fits from Appendix Table 1 and given is shown in the Online Appendix. 
Overall, the model appears to capture the psychometric patterns 
although, as expected given the smaller individual sample size, the re
sults are noisier compared to the aggregate fit. 

2.2.4. Properties of the fixation process 
Here, we describe the fixation process that participants engage in and 

whether it is consistent with the model’s assumptions. 
The location of participants’ first fixation is shown in Table 3. Par

ticipants were likely to first look to the upper left region of interest, and 
were more likely to first look up (t(33) = 10.71, p < 0.001) and first look 
to a left attribute (t(33) = 15.14, p < 0.001). There was no bias to first 
looking at the aversive attribute (mean = 51.7%, SD = 4.5%) which 
indicates participants did not initially notice color other low-level sa
liency differences between appetitive and aversive foods as the location 
of the attributes were randomized across trials (t(33) = 1.67, p = 0.105). 
Additionally, participants were not more likely to make an initial fixa
tion to the more preferred bundle (t(33) = 1.74, p = 0.091) indicating 
that they could not identify preferred choice options based on saliency 
features. Together, these results suggest that the location of initial fix
ations are largely driven by the spatial location of stimuli and not the 
value of choice set features. 

As depicted in Fig. 4, fixations that were made to aversive features 
were approximately 35 ms longer than those to appetitive features for all 
fixation orderings (first: t(33) = 4.07, p < 0.001; middle: t(33) = 6.57, p 
< 0.001; last: t(33) = 4.63, p < 0.001). This finding is consistent with the 
model’s assumptions described above in that fixations to different types 
of attributes can follow different processes. Here, that process is that the 
aversive attribute has a longer processing latency than the appetitive 
attribute. 

We next tested whether the value of the choice features altered fix
ation durations. Table 4 reports the results of an analysis where fixation 

duration is regressed on a constant, indicator variable for whether the 
currently fixated feature is appetitive or aversive, and the value of the 
currently attended feature for both first and middle fixations. We add 
the attribute indicator to the regression, as the above results found fix
ation duration was increased for fixations to aversive features. Addi
tional analyses controlling for the value of the three unfixated features 
are also reported. For both the first and middle fixations, the attended 
feature’s value was negatively correlated with fixation duration, 
although the point estimates suggest the effect is relatively small in all 
cases. For instance, a change from a feature’s minimum possible value to 
its maximum was associated with an initial fixation difference of only 17 
to 18 ms. Moreover, the value of all the unattended features were not 
associated with differences in fixation duration. Finally, Table 5 reports 
a similar analysis with choice difficulty as an independent variable and 
finds that the first fixation was not impacted by the difficulty of the 
choice, but the duration of the middle fixation was to a small degree. 
However, a shift from the easiest to most difficult decision was only 
associated with a middle fixation difference of 34 ms. Overall, these 
results suggest that the value of the choice set features do not play a 
strong role in determining the fixation duration. 

Finally, we examine the factors that influence the direction of the 
next saccade in the fixation process. Table 6 reports the mean proba
bility of making a fixation to an ROI conditional on the location of the 
current fixation. Regardless of the location of the current fixation, the 
next saccade was likely to be either within-attribute (i.e., horizontal) or 
within-option (i.e., vertical). Overall, 39.4% (SD = 6.8%) of saccades 
were within-attribute, 50.0% (SD = 5.2%) were within-option, and only 
10.6% (SD = 3.5%) were between attribute and option (i.e., diagonal). 
Given this, individuals were overall more likely to make within-option 
compared to within-attribute saccades (t(33) = 5.35, p < 0.001), 
although there was heterogeneity in this measure (mean = 10.7%, SD =
11.6%, max = 33.8%, min = -17.7%).6 Appendix C reports the results of 
several additional analyses that investigate the heterogeneity of the 
individual estimated model parameters as they relate to fixation stra
tegies. For the most part, there are few results that suggest different 
fixation patterns are associated with particular model estimates 
(Table 7). 

Given the relatively small number of diagonal fixations, we next 
examine how the value of the features impacted the likelihood of 
making a within-option saccade (i.e., vertical) as opposed to a within- 
attribute saccade (i.e., horizontal). To do this, we ran a mixed-effects 
logistic regression where we regressed a binary variable for whether a 

Table 5   

First Middle 

Constant  239.1**  305.3**  
(8.7)  (9.8) 

Appetitive Indicator  − 17.5**  − 44.5**  
(3.5)  (5.7) 

|Left Value – Right Value|  − 1.3  − 8.5**  
(1.6)  (2.2) 

Note: Effect of choice ease on fixation durations. Linear mixed-effects regressions 
are reported where fixation duration is regressed on a constant, indicator for 
whether the currently fixated item is appetitive, a measurement of choice ease. 

Table 4   

First Middle 

Constant 248.1** 256.5** 320.1** 321.5** 
(9.3) (11.2) (11.5) (13.0) 

Appetitive Indicator − 13.2** − 13.2** –32.4** –33.5** 
(3.8) (4.2) (6.3) (6.5) 

Attended Feature − 7.2** − 6.8** − 18.1** − 18.0** 
(2.1) (2.3) (3.1) (3.1) 

Unattended Feature ADOS  − 1.0  2.1  
(2.1)  (2.5) 

Unattended Feature ASOD  − 3.1  0.0  
(2.5)  (2.3) 

Unattended Feature ADOD  − 1.5  − 2.9  
(1.9)  (2.6) 

Note: Effect of feature values on fixation durations. Linear mixed-effects re
gressions are reported where fixation duration is regressed on a constant, indi
cator for whether the currently fixated item is appetitive, the value of the 
attended feature, and the value of the three unattended features. The notation 
AiOj refers to whether the attribute, A, and option, O, are the same as the 
attended feature (i.e., i or j equals S) or different from the attended feature (i.e., i 
or j equals D). 

6 A total of 26 of the 34 participants (76%) in the study were more likely to 
make a within-option saccade than a within-attribute saccade. Noguchi & 
Stewart (2014) found the opposite result in their data, namely that within- 
attribute saccades were more prominent than within-option saccades. Howev
er, their results may not be directly comparable to the context here as they 
studied choices with more than two options. Furthermore, it is possible that the 
propensity to make a certain type of saccade is driven by the location of features 
on the computer screen which differed between studies. 
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saccade was within-option (i.e., 1 if within-option and 0 if within- 
attribute) on the values of the choice set features. Table 6 reports the 
results. Although the value of the current feature was positively asso
ciated with making a within-option saccade, the size of the effect was 
quantitatively small. To better examine this, we report an effect size 
estimate in bold below each estimated coefficient. This estimate com
putes the change in the probability of making a within-option saccade as 
a dependent variable moves from its highest to lowest value, conditional 
on all other variables taking their mean value observed in the data. 
Given this, the maximum possible change in an attended feature’s value 
was only associated with an 11.8% change in the propensity to make a 
within-option saccade. Additionally, we found a quantitatively small 
effect of difficulty on saccade direction (slope = 0.07, p < 0.001; mean 
effect size = 6.5%). Like fixation duration, the results here suggest there 
is only a minor impact of feature value on saccades. 

2.2.5. Model predictions 
The model makes several additional predictions regarding how 

patterns of fixations are related to choices, and these are tested below. 
First, the model makes the prediction that final fixations have a 

shorter duration than middle fixations. The logic for this is straightfor
ward: final fixations are terminated early as the RDV crosses a threshold 
before the fixation is terminated by reaching its randomly selected 
duration which was drawn from the empirical distribution of possible 
fixations. This finding holds in the data (Fig. 4; mean last = 235 ms, 
mean middle = 274 ms; t(33) = 6.39, p < 0.001). Additionally, first 
fixations were shorter than middle fixations (mean first = 229 ms, mean 
middle = 274 ms; t(33) = 6.46, p < 0.001) and this finding was incor
porated in the estimation procedure through the separate sampling of 

first and middle fixations as described above. 
Additionally, conditional on the choice an individual makes, the 

model predicts an association between the fixation-averaged value that 
is computed at the start of the last fixation and the duration of that last 
fixation. For instance, given that the individual chose the left-hand op
tion, the final fixation’s duration should be negatively correlated with: 

FPL ((PL + δNL) − θ(PR + δNR) ) + FNL ((δPL + NL) − θ(δPR + NR) )

− FPR ((PR + δNR) − θ(PL + δNL) ) − FNR ((δPR + NR) − θ(δPL + NL) ),

where Fij is the fraction of the trial, before the final fixation, spent 
attending to the i ∈ {appetitive, aversive\} attribute on the j ∈ {left,
right} of the screen. The intuition underlying this relationship illustrates 
several important components at work in the model. Conditional on 
choosing left, the larger the fixation-averaged value before the final 
fixation, the shorter the final fixation should be as the RDV is already 
“close” to the left threshold. Likewise, the lower the fixation-averaged 
value before the final fixation, the more evidence the individual has in 
favor of choosing the right-hand option, the more distance would need 
to be covered in order to choose the left option. Hence, the longer the 
final fixation would be. 

This prediction was tested by conducting a mixed-effects regression 
of the final fixation duration on the final fixation averaged-value, as 
defined above, conditional on the participant choosing “left.” There was 
a significant effect in the hypothesized direction (slope = -12.41, t(33) 
= -2.94, p = 0.003). Furthermore, the model makes a similar prediction 
for trials in which participants choose “right,” although the sign of the 
effect flips. This effect was also observed in the data (slope = 16.36, t 
(33) = 3.80, p < 0.001). 

The above results are consistent with the hypothesized relationships 
between fixations and choices. 

2.2.6. Choice biases 
When θ < 1 and δ < 1, the model makes a number of predictions that 

the standard DDM, i.e. θ = δ = 1, does not make. These predictions are 
tested below and involve a number of correlations between attention 
and choice. 

First, the model predicts that, controlling for the value of the four 
features, the likelihood of choosing the left option increases with time 
spent attending to either of the left features, and decreases with time 
spent attending to the right-hand features. The intuition for this is that 
additional time spent attending to a feature allows the decision-maker to 
gain evidence in favor of choosing the option associated with the 
attended feature. To test this prediction, we ran a logistic mixed-effects 
regression where a binary variable for choosing the left option was 
regressed on the feature values and their interaction with fixation time. 
The signs on the interactions are significant and in the direction pre
dicted by the model (data: either left feature slope = 0.001, either right 
feature slope = -0.001, p < 0.001 for all four slopes; simulation: either 
left feature slope = 0.001, either right feature slope = -0.001, p < 0.001 
for all four slopes). Note that the size of each interaction can be quite 
substantial as an increase of 1 ms duration to a feature is associated with 
an increase of 0.001 in the log-odds of selecting an option. 

Second, the model predicts that the probability of choosing the left 
bundle depends on the relative amount of time one attends to each of the 
left-hand features compared to their right-hand features. To test this 
prediction, we compute a corrected choice measure by subtracting the 
observed choice (left = 1, no = 0) from the average frequency with 
which the left option was chosen for all trials with that difference in 
liking values. In Fig. 5a, we pool the data across attributes within the 
same option and verify that an increased time advantage to either of the 
left-hand features is associated with an increased probability in choosing 
the left-hand option in both the data (slope = 0.0003, p < 0.001) and 
simulated model (slope = 0.0001, p < 0.001). 

To examine this effect at an attribute level, we then estimated a 

Table 7  

Constant − 0.03 0.13 
(0.05) (0.08) 

Appetitive Indicator 0.09* 0.15** 
(0.04) (0.04) 
2.2% 3.7% 

Attended Feature 0.16** 0.18** 
(0.02) (0.02) 
11.8% 12.9% 

Unattended Feature ADOS  − 0.04  
(0.02)  
¡3.2% 

Unattended Feature ASOD  − 0.13  
(0.02)  
¡9.4% 

Unattended Feature ADOD  0.03  
(0.02)  
2.5% 

Note: Effect of feature values on saccade patterns. Logistic mixed-effects 
regression where a binary variable for making a within-option saccade, as 
opposed to within-attribute, is regressed on an indicator for the current fixation 
being to an appetitive food, the value of the attended feature, and the value of 
the three unattended features. The notation AiOj refers to whether the attribute, 
A, and option, O, are the same as the attended feature (i.e., i or j equals S) or 
different from the attended feature (i.e., i or j equals D). The mean effect size of 
moving each independent variable throughout its range, holding all other var
iables at their mean value, on the probability of making a within-option saccade 
is shown in bold below each estimate and standard error. 

Table 6    

To:   

Same Option Same Attribute Other 

From: Upper Left  0.49  0.44  0.06 
Upper Right  0.56  0.34  0.09 
Lower Left  0.46  0.39  0.15 
Lower Right  0.50  0.39  0.11 

Note: Saccade patterns. The mean probability of making a fixation to an ROI 
(columns) conditional on the location of the current fixation (rows). 
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linear regression of the corrected choice probabilities on the relative 
time advantage to the left appetitive and aversive attributes. Both 
increased attention to the left feature for each of the attributes was 
correlated with an increased probability of choosing the left-hand option 
in the data (appetitive slope = 0.0004, p < 0.001; aversive slope =
0.0002, p < 0.001) and the model (appetitive slope = 0.0001, p < 0.001; 
aversive slope = 0.0001, p < 0.001). These results suggest that relative 
attention differences at an attribute level are associated with choice 
biases. 

Third, any biases in the first attended feature should be correlated 
with choice biases. Fig. 5b and 5c show this is the case for all four fea
tures, and linear regressions verify this for the left appetitive attribute 
(slope = 0.17, p = 0.016), left aversive attribute (slope = 0.17, p =
0.015), right appetitive attribute (slope = -0.17, p = 0.019), right 
aversive attribute (slope = -0.16, p = 0.013). The logic underlying this 
relationship is that an initial fixation to a feature moves the RDV closer 
to the threshold associated with that feature’s option and, hence, in
creases the probability the option is chosen. Note that a strong impact 
for earlier attended features is also consistent with previous psycho
logical theories, in particular those from query theory which argue that 
earlier queries more heavily affect value than later queries (Johnson, 
Häubl, & Keinan, 2007; Weber et al., 2007). 

Finally, the model makes predictions about the relationship between 
the location of the final fixation and choice. Specifically, the model 
predicts that, controlling for the difference in ratings, the probability of 
choosing the left option is larger when the last fixation is to a left 
attribute. To see why, note that attending to either left attribute is 
typically associated with a slope of the RDV that is biased towards the 
left option. Fig. 5d and 5e show this is indeed the case for the appetitive 
and aversive attributes. To quantitatively test for this effect, we 
regressed a binary variable for whether or not a participant chose the 

left-hand option on the difference in liking ratings and an indicator 
variable for whether the last fixation was to a left feature, separately for 
the appetitive and aversive attributes. We found a sizeable bias on this 
indicator term in both regressions for the data (appetitive slope = 1.11, 
p < 0.001; aversive slope = 1.42, p < 0.001) and model (appetitive slope 
= 1.33, p < 0.001; aversive slope = 1.30, p < 0.001). The biases in the 
model follow a quantitatively similar pattern to the data. Note that 
finding a strong impact of the last fixation is consistent with previous 
work that has found evidence of recency effects in decision-making 
(Häubl, Dellaert, & Donkers, 2010; Li & Epley, 2009; Wedel & Pieters, 
2000). 

Overall, the data confirms a number of patterns between choices and 
fixations that are identified by the model with the estimated option and 
attribute fixation biases found here. Moreover, the findings are consis
tent with previous work that has explored how information acquired at 
different points in the decision process influence choice. Finally, the 
results here could be used to improve forecasts for how simple shifts in 
attentional variables (e.g., spatial location of an attribute) influence 
decisions. 

3. Study 2: Causal attentional manipulation 

The above study found that the proposed model was able to quan
titatively account for the relationships between choices, response time, 
and how these variables are correlated with attentional patterns in a 
simple multiattribute choice task. However, the theory predicts a causal 
relationship between attention and choice and the above evidence is 
purely correlational. To address this issue, we ran an additional exper
iment where we manipulated fixation duration to features in order to 
test for causality. 

Fig. 5. Choice biases. a) The corrected probability of choosing the left option as a function of the relative time advantage fixating to the left option. Bins display the 
odd-numbered trial data and the red line is the best fitting model’s prediction. In order to compute the bins, the data was grouped into seven equal bins and their 
medians are reported on the horizontal axis. b) Probability of choosing the left-hand option as a function of first looking at the left appetitive attribute (white circles) 
or right appetitive attribute (black circles). Each circle depicts a different participant. c) Same as (b) but for the aversive rather than appetitive attribute. d) 
Probability of choosing the left-hand option as a function of the liking difference between options and whether the last fixation was to the left or right appetitive 
feature. White and black dots indicate the odd-numbered data when the last fixation was to the left or right appetitive attribute, respectively, and dotted and solid red 
lines indicate the model predictions when to the left or right appetitive attribute, respectively. Standard errors are clustered by participant and can be large for the 
extreme values due to a low number of observed trials in those bins. e) Same as (d) but for the aversive rather than appetitive attribute. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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3.1. Methods 

3.1.1. Participants 
A total of 50 students were recruited to take part in the experiment. 

The set of participants recruited for this experiment did not overlap with 
Study 1. We excluded 17 participants from completing the experiment 
due to an inability to either properly calibrate the eye tracker or 
abnormal patterns in the initial behavioral tasks which was identical to 
Study 1. After these exclusions, which did not generate a full data set 
across the tasks described below, 33 participants remained (64% female; 
mean age = 23.6). We planned to collect at least 30 participants before 
analyzing the data. All participants had normal or corrected-to-normal 
vision. Participants were paid $5 for attending the experimental ses
sion and received an additional $20 after the experiment terminated. All 
participants reported that they had no food allergies and the study was 
approved by the local Institutional Review Board. 

3.1.2. Task 
Participants were asked to fast for four hours prior to the task and 

compliance was verified through self-report. 
Participants completed two related tasks involving 31 food stimuli. 

They were informed at the beginning of the experiment that there would 
be two tasks; however, they were only given the instructions for each 
task immediately before it began. 

The first task was identical to the first task from Study 1. Specifically, 
participants entered a liking rating for each food using an integer scale 
(-3 to 3, framing: “how much would you enjoy that particular food at the 
end of today’s experiment?”). Each of the 31 foods were displayed twice 
to each participant in a random order. As before, we averaged both 
ratings for each snack and participant in order to create participant- 
specific “appetitive” and “aversive” classes. On average, participants 
had 16 appetitive foods and 15 aversive foods and the ratings were 
qualitatively similar to Study 1 (see Table 8). 

In the second task, participants completed a similar choice task be
tween two bundles, as in Study 1. However, the task here contained a 
critical difference in that we attempted to exogenously increase atten
tion to one of the four features in a choice set (i.e., either the left 
appetitive feature, right appetitive feature, left aversive feature, or right 
aversive feature). Here, participants answered 201 questions between 
choosing a bundle on the left-hand side of the screen or a bundle on the 
right-hand side of the screen. A set of 50 questions were each repeated 
four times to generate 200 questions. In each repetition, we attempted to 
shift attention exogenously to one of the four features on the screen. 
Additionally, we generated one question that was identical across par
ticipants to facilitate similar consumption options across participants. In 
the results, we exclude the analysis of this trial since it was not displayed 
in all four conditions. 

We sought to alter attention to each of the four features in the 
following way. First, we defined one of the four features as the “target.” 
In each of the four repetitions of each choice set, each of the four features 
was chosen to be the target feature exactly once. The target feature 
appeared in isolation on the screen for an amount of time chosen 
randomly from the interval [500 ms, 850 ms], which was larger than 
typical fixation time to features from Study 1. Non-target features 
appeared in isolation on the screen for an amount of time chosen 
randomly from the interval [200 ms, 260 ms], an amount of time 
approximately equal to the typical fixation duration from Study 1. This 
timing was utilized so that participants would be able to accurately 
perceive all stimuli. Although features were displayed one at a time in 
isolation from one another, they appeared in spatially distinct locations 
as in the choice task for Study 1. Specifically, each feature would appear 
in either the upper left, upper right, bottom left, or bottom right section 
of the screen. As in Study 1, the location of the appetitive and aversive 
stimuli were randomized as either being located on the top or bottom of 
the screen. 

Once a feature was fixated at for the predetermined amount of time, 
as determined by the eye tracker, that feature disappeared from the 
screen. Next, a different feature was shown in a spatially distinct region 
until all features had been displayed exactly once. Viewing times were 
enforced by the eye tracker in that the eye tracker actively recorded the 
amount of time a participant fixated to each feature and once it was 
viewed for its predetermined duration, the feature disappeared from the 
screen. Each feature was displayed exactly once, and the order in which 
each feature appeared was randomized, both by location and by whether 
or not the the feature was the target feature. After viewing all features, a 
question mark was placed in the center of the screen which served as the 
participant’s prompt to enter their choice to consume the left options (by 
pressing “v” on the keyboard), or the right options (by pressing “b” on 
the keyboard).7 Participants were only able to enter their choice once 
the question mark appeared. 

Previous work suggests that even in short enforced fixation times like 
those used here, participants are able to recall features that were viewed. 
Furthermore, the shorter fixation times used here closely match the free 
fixation viewing patterns from Study 1. Finally, note that as this task was 
monitored by the eye tracker, participants actually had to fixate on a 
feature for the predetermined amount of time before that feature was 
removed from the screen. 

After consuming their chosen bundle from the selected trial in the 
experiment, participants were asked to complete a brief questionnaire. 
This questionnaire collected demographic information as well as beliefs 
about the experiment. 

Table 8  

Food Rating Food Rating 

KitKat  2.33 Chocolate Pudding − 0.02  
(0.79) (1.89) 

Ghirardelli Milk Chocolate  2.18 Tootsie Rolls − 0.35  
(0.74) (2.18) 

Milano Cookies  1.89 Garbanzo Beans − 0.97  
(1.30) (1.71) 

Crunch  1.79 Tuna − 1.55  
(1.23) (1.81) 

Peanut M&Ms  1.74 Sweet Peas − 1.74  
(1.08) (1.38) 

Oreos  1.56 Spinach − 1.88  
(1.30) (1.38) 

Reese’s Peanut Butter Cups  1.38 Beets − 1.89  
(1.75) (1.58) 

Twix  1.36 Vienna Sausage − 1.97  
(1.84) (1.52) 

Snickers  1.20 Pureed Carrots − 2.00  
(1.61) (1.49) 

Doritos  0.79 Artichoke − 2.08  
(1.56) (1.35) 

Milky Way  0.73 Spam − 2.23  
(1.78) (1.32) 

3 Musketeers  0.64 Chicken Spread − 2.32  
(1.80) (1.18) 

Hot Cheetos  0.56 Green Beans − 2.36  
(2.06) (0.99) 

Nature Valley Granola Bar  0.52 Sardines − 2.45  
(1.64) (1.05) 

Butterfinger  0.35 Ham Spread − 2.52  
(2.00) (1.08) 

Almond Joy  0.09    
(2.12)  

Note: Stimuli used in Study 2. Each stimulus contains the mean rating across 
participants with standard deviations below in parentheses. 

7 In an open-ended question at the end of the study, participants were asked, 
“what do you think this study is about?” Two participants referenced that we 
were interested in how order or differential attention to the images influences 
choices. Removing these participants from the data set does not alter the sig
nificance of the results below. 
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3.2. Results 

When the target feature was the left appetitive or left aversive 
stimulus, participants chose the left outcome 49.2% (SD = 7.5%) and 
48.4% (SD = 7.2%) of the time, respectively. However, when the target 
feature was the right appetitive or right aversive stimulus, participants 
chose the left outcome only 46.6% (SD = 6.8%) and 46.5% (SD = 7.7%) 
of the time, respectively. Hence, exogenously shifting fixations to a left 
vs right feature increased the probability of choosing the left option by 
2.3% (t(32) = 3.50, p = 0.001). Moreover, shifting attention to the left 
rather than right appetitive attribute increased the likelihood of 
choosing the left option (t(32) = 2.81, p = 0.008) and shifting attention 
to the left rather than right aversive attribute increased the likelihood of 
choosing the left option (t(32) = 2.32, p = 0.027). 

To explore how well the model fits the data, we used the best fitting 
model parameters from Study 1 to predict a choice in each trial, given 
the observed pattern of fixations and feature values. Fig. 6 plots the data 
and this model prediction dependent on whether the attentional 
manipulation was towards a feature on the left or right option. The data 
mimics the model’s prediction in that there is a higher likelihood of 
choosing left when attention is shifted towards a left feature for most 
liking difference values. However, the effect size is notably smaller than 
the model predicts. 

There are at least three reasons why the observed effect is smaller 
than the model predicts. First, unlike Study 1 participants fixations are 
not free to vary but are carefully manipulated to each feature for a 
predetermined amount of time. It is possible that these changes from 
natural fixation patterns influence the effectiveness of the manipulation. 
Second, the manipulation successfully biases fixations, but not neces
sarily attention throughout the decision process. The reason why is that 
a choice could have been made before attention was biased to the pre
determined feature. Third, it is possible that, despite some of the evi
dence from Study 1 and previous literature, attention is more 
endogenous than previously hypothesized. However, despite the smaller 

than expected size these results are consistent with the existence of a 
causal path from attention to choice in the multiattribute setting 
explored in the studies. 

4. Discussion 

The results here are a step towards better understanding how 
attention to choice features affects multiattribute decision-making. A 
modified attentional drift diffusion model was fit to a simple multi
attribute choice environment and the predictions of the model were 
tested in two laboratory experiments that employed eye tracking. 
Importantly, the model is focused on the process of the decision itself, 
rather than solely on choice outcome; hence, it makes quantitative and 
testable predictions about the relationship between choices, response 
times, and attention to features of the choice set. The results suggest the 
model can provide an accurate description of the choice process. 

Model fitting results and additional tests suggest evidence for a fix
ation bias in multiattribute choice. Specifically, how value is dynami
cally integrated changes depending on the currently attended attribute 
and option. In the model, this change is related to the speed, or drift, of 
evidence accumulation in favor of either consuming the left or right- 
hand option. The data suggests that only 80% of an unattended attri
bute’s value and 60% of an unattended option’s value was integrated in 
the evidence accumulation process. This fixation bias has important 
implications that extend to the observed behavioral phenomena. For 
instance, the more time spent attending to either left-hand attribute 
increased the probability of consuming the left-hand bundle. Addition
ally, participants who looked first at either feature of a bundle were 
more likely to choose it, even though there is sizeable trial by trial noise 
as to the feature participants first attended. These, among other findings, 
demonstrate that eye fixations to attributes and options impact choices 
in several key ways that the model predicts. 

An important question about the model concerns the direction of 
causality between fixations and choice. Specifically, whereas the model 
assumes that fixations alter the value comparison process, it is also 
possible that attribute values influence the fixation process. Indeed, after 
controlling for the fixated attribute type we find that lower value fea
tures are fixated for longer durations, but the size of this effect is rela
tively small. We address this assumption in the second study where we 
attempt to vary attention via an exogenous manipulation. We find that, 
regardless of the attribute, increasing fixation duration to a feature leads 
to an increased probability of selecting the option that has an increased 
amount of attention. This relates to previous work that has found fixa
tions bias decision-making which has important practical implications 
for managers seeking to nudge choices (Armel et al., 2008; Milosavljevic 
et al., 2012; Ghaffari & Fiedler, 2018; Pärnamets et al., 2015; Fisher, 
2021). Additional evidence from neuroscience finds that the ventro
medial prefrontal cortex encodes relative value signals that are altered 
by attention which suggests that fixations may alter the value compar
ison process (Lim et al., 2011). 

Although Fisher (2017) explored a similar choice environment (i.e., 
accept-reject decisions with an appetitive and aversive stimulus), the 
contribution here differentiates itself in several important ways. First, 
the setting here models a more complex multiattribute choice paradigm 
and thus, can estimate the degree to which participants underweight 
both unfixated attributes and unfixated options. Of note is that whereas 
Fisher (2017) found a relatively small attribute fixation bias, the data 
here finds that 80% of an unattended attribute’s value and 60% of an 
unattended option’s value was integrated in the evidence accumulation 
process. It is possible this difference is due to the nature of the choice 

Fig. 6. Study 2 attentional manipulation. The probability of choosing the left 
option as a function of the liking difference between options. Colored circles 
represent the data with standard error bars, and lines represent the best fitting 
model’s prediction. Blue indicates the attentional manipulation was on a 
feature of the left option and red indicates the attentional manipulation was on 
a feature for the right option. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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task employed: binary as opposed to accept-reject choices. Moreover, 
the results here suggest that attention to either attribute of a choice 
option is associated with an increased probability of selecting it, which is 
consistent with some previous sequential sampling models (e.g., Gossner 
et al. 2018). This suggests an intriguing relationship between combi
nations of appetitive and aversive stimuli. Although previous work has 
found that increased attention to an aversive option is negatively 
correlated with the propensity to select the attended option in binary 
choice (Armel et al., 2008) and that attention to an aversive attribute is 
negatively associated with selecting the associated option over a refer
ence option in accept-reject decision (Fisher, 2017), it is possible that 
this relationship reverses when choices are multi-attribute and over 
multiple options, as found here. Future work should investigate how the 
pattern of evidence accumulation relates to the choice setting and 
context (e.g., accept-reject versus two-alternative forced choice). 
Finally, the work here tests the attention causality assumption inherent 
in previous attentional drift diffusion models and finds it is supported by 
the data: manipulating attention to features alters choices in ways the 
model predicts. 

Several psychological and practical implications emerge from these 
results. First, although substantial evidence indicates context variables 
affect decisions (e.g., Ariely et al., 2003; Tversky & Kahneman, 1974; 
Johnson & Schkade, 1989; Simonson, 1989; Read & van Leeuwen, 
1998), we lack a systematic understanding for how such variables in
fluence choice. The approach here suggests that an important compo
nent of this problem is to better understand how context variables 
influence attention. For example, certain context effects might arise due 
to changes in attentional allocation and models that integrate atten
tional data, such as variations of the one here, might be able to more 
accurately estimate the presence and size of such effects. Relatedly, 
recent work has found that context effects can increase with deliberation 
time (Pettibone, 2012; Trueblood et al., 2014) which is consistent with 
the prediction from certain sequential sampling models. 

Second, although the model details a decision environment over 
appetitive and aversive foods, this structure relates to common mana
gerial problems in organizational settings such as purchasing decisions 
and intertemporal tradeoffs. For example, note that in each of these 
additional settings the decision-maker receives a benefit (e.g., product 
or monetary amount) and experiences a cost (e.g., monetary cost to 
purchase a product or delay date). The findings here suggest that most 
individuals do not fully account for unattended features as they make 
decisions. However, the vast majority of model-based predictions in 
these settings do not account for such variation in attention. Capturing 
additional decision process variables, such as attentional deployment, 
frequently improves predictions and can lead to more accurate forecasts 
(Stüttgen et al., 2012; Willemsen et al., 2011). 

Third, the model predicts that fluctuations in attention can influence 
choices. That is, attentional manipulations can nudge individuals to 
select the more attended alternative. This is practically useful in situa
tions where managers may attempt to nudge or retrain attention to in
fluence decisions rather than attempt to alter underlying preference 
parameters that could be comparatively inflexible. For example, time 
pressure is a ubiquitous factor found across organizational settings that 
has been found to influence a wide array of choice domains including 
intertemporal choice (Lindner & Rose 2017), risky decision-making 
(Guo et al., 2017; Svenson et al., 1993; Saqib & Chan, 2015), and pur
chasing decisions (Dhar & Nowlis 1999). In cases where time pressure 
can induce pervasive effects, managerial tools that manipulate attention 
might reverse or dampen such effects. Although the model here over
predicted the effect of an exogenous manipulation of attention relative 
to the data in Study 2, there may be alternative manipulations that more 

closely match the quantitative predictions. 
We conclude by noting three limitations of our work. First, the model 

assumes that fixations should be independent of a feature’s value, yet 
the data finds evidence of a small correlation in certain analyses. For 
example, fixation duration was correlated with a feature’s value 
although the size of the effect was found to be small. Additionally, a 
feature’s value could impact the propensity to make a within-option 
versus within-attribute saccade by up to 12%. Although these findings 
do violate an assumption of the model, they also indicate that when 
there is an effect of value on the fixation process in this task, it is often 
quite small in magnitude. Furthermore, it is worth noting that in many 
other analyses, the assumptions in the fixation process are justified by 
the data. Ultimately, future work should attempt to better understand 
the relationship between value and attention in multiattribute choice. 

Second, the environment participants are placed in is fairly artificial 
as they face a large number of trials on a computer screen. Although it is 
not realistic for consumers to encounter such scenarios in real world 
environments, this highly stylized laboratory setting allows for the ac
curate estimation and testing of the proposed model and is likely 
correlated with real-world decision-making. Specifically, in order to fit 
the model a large number of choices must be observed so that precise 
parameter estimates can be pinned down and tested in an out-of-sample 
comparison. Although the questions asked of participants here are 
frequent and over a common set of snacks, many decisions individuals 
engage in are often repetitive and numerous. Moreover, we are able to 
better understand how valuations of single attributes are integrated 
together to determine a consumption value of a multiattribute option, 
which is a fairly novel task. In future research, it would be useful to 
apply this style of model to observable real-world choices such as 
naturalistic multiattribute choice (Bhatia & Stewart, 2018), where 
process tracking data might also be available. Additionally, it would be 
intriguing to extend the model to multi-attribute decisions where value 
contains an interaction effect, unlike the environment studied here. One 
possible way to do this could be to estimate an additional fixation bias 
on the interaction term. 

A third limitation is that two assumptions of the model remain un
tested. Specifically, the attentional effect is assumed to be modulated by 
the value of the fixated feature, as opposed to a purely additive effect of 
attention independent of value (e.g., Cavanagh et al., 2014). Although 
previous work has found this assumption largely holds in simple binary 
choice data (Smith and Krajbich, 2019), future work should test this 
assumption in multi-attribute settings. Second, the model assumes the 
same attentional bias for the unfixated attribute of both options, 
although this is modulated by the option bias on the unfixated option. 
Although it is possible to estimate a version of the model that does not 
make this assumption, more trials would likely be needed in order to 
reduce the noise associated with the estimation procedure and the 
relatively small quantitative impact of the attribute bias compared to the 
option bias. 
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Appendix A 

Group Model Fit Procedure 
The group maximum likelihood procedure was conducted as follows and the likelihood computation is similar to a previous estimation technique 

first employed in Tavares et al. (2017) that was used to estimate an option fixation bias. Here, we adapt their estimation technique to estimate two 
fixation biases: one for the unfixated choice option and one for the unfixated attribute, though the underlying logic of the technique is identical. 

We defined a grid of parameter combinations over the following set: 
d in {0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}
σ in {0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09}
θ in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 
δ in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 
We then computed a likelihood, as described below, for each of the 13,310 parameter combinations in the above set. The time data (including the 

response times, fixation durations, latencies, and saccades) were binned into 10 ms steps to help reduce the computational cost of the estimation. 
In order to compute the likelihood of a trial conditional on choice, response time, and the pattern of observed fixations, we first discretized the RDV 

into 21 bins of size 0.1 which transformed the model state-space into a two-dimensional table where rows indicated the state of the RDV and columns 
indicated time, increasing from left to right, in 10 ms intervals. At every point in the table, we filled in the probability of the RDV being in each time bin 
(as described in the next paragraph) given the model and choice set parameters of a trial, conditional on a decision not having been made at that time. 

To begin each simulation, we started at time point zero in the first column of the table and assigned a probability of 1 to the zero-bin, which reflects 
the assumption that the RDV takes value zero at the beginning of every trial. We next filled in the columns of the table, from left to right, using the 
following logic. Let Pi

t denote the probability the RDV is in bin i at time t. Then, for all RDV bins j between the +/- 1 evidence thresholds, the 
probability of the RDV being located in bin j at time t + 1 is Pi

t+1 =
∑

i
Pi

tP
i→j
t , where Pi→j

t is the transition probability from i to j. Pi→j
t can be computed by 

noticing that the change in the RDV in one time step is N(μ, σ). Before a fixation to a feature, during non-feature fixations, and during any saccades, μ =

0. During feature fixations, 

μ =

⎧
⎪⎪⎨

⎪⎪⎩

(PL + δNL) − θ(PR + δNR), fixation to PL
(δPL + NL) − θ(δPR + NR), fixation to NL

− ((PR + δNR) − θ(PL + δNL)), fixation to PR
− ((δPR + NR) − θ(δPL + NL)), fixation to NR  

hence, Pi→j
t is given by the probability density function N(μ, σ) for γ where γ is the difference in mean RDV values between bins j and i. 

Whereas the above describes the state of the RDV at each time assuming a decision is not yet made, we also calculate the probability of the RDV 
crossing a threshold and a decision being made at each time point. For example, the probability of the model crossing the upper threshold (corre
sponding to a left choice) at time t + 1 is PUP

t+1 =
∑

i
Pi

tPi→UP
t where Pi→UP

t is the probability of the RDV moving from bin i to reaching the upper threshold 

at time t, which is given by a draw from N(μ, σ) which is greater than 1 − i, and PDOWN
t+1 is similarly defined as crossing the lower threshold. 

Then, for every trial the RDV table is filled out from left to right until the observed response time is reached. The likelihood is given by PUP
RT if a left 

choice was made and PDOWN
RT if a right choice was made. Note that the sum of the likelihood at any given RT is not restricted to sum to one as long as 

there is some probability that a choice can be made before that time. 
In the computations, we took the duration of all fixation events in milliseconds and divided by the size of the time bin (i.e., 10 ms). We discarded 

the remainder in order to allow each corrected fixation event duration to be an exact multiple of our time bin size. This allows each fixation event to 
terminate at the end of a time bin, simplifying the computations. 

Appendix B 

Individual Model Fit Procedure 
The individual maximum likelihood estimation procedure was identical to the procedure described in the “Group Model Fit Procedure” in 

Appendix A with the following caveats. First, rather than pooling all data into one pooled data set, we perform the estimation procedure separately for 
each participant. Second, if the best fitting parameters included a value of d or σ that was a maximum or minimum value over the set of parameters in 
the search set, we extended the searched parameters to include additional values. This only occurred for three participants. The results are reported 
below in Appendix Table 1. 

Appendix Table 1  

Participant ID d  σ  δ  θ  LL 

102  0.004  0.06 1 0.5 − 879.32 
104  0.003  0.05 0.9 0.8 − 880.90 
105  0.004  0.075 0.6 0.7 − 886.81 
108  0.001  0.065 1 0.4 − 844.89 
109  0.004  0.07 1 0.5 − 899.76 
110  0.004  0.06 0.8 0.8 − 897.16 
111  0.020  0.11 0.9 0.4 − 635.18 
114  0.005  0.075 0.4 0.3 − 830.83 
115  0.007  0.07 0 0.9 − 910.87 
116  0.005  0.06 0.8 0.5 − 879.75 
118  0.004  0.07 0.8 0.7 − 860.28 
120  0.003  0.055 1 0.9 − 889.70 

(continued on next page) 
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Appendix C 

Heterogeneity of Model Parameters and Fixation Strategies 
To examine whether individual differences in model parameters were associated with differences in search strategies, as suggested, we looked at 

the correlation between each of the four estimated model parameters (i.e., δ, θ, σ, and d) at the individual level and search strategies in several ways. 
First, we looked at the correlation between each model parameter and the average number of types of saccades made by each participant. We did 

not find any significant relationship between δ or θ and search strategies (δ: total attribute-based saccades: β = − 0.0, p = 0.988, total option-based 
saccades: β = 0.4, p = 0.401; θ: total attribute-based saccades: β = 0.5, p = 0.180, total option-based saccades: β = 0.9, p = 0.086). This suggests the 
fixation bias parameters were not influenced by search strategy. The marginally significant result provides some weak evidence that the propensity to 
search within an option is correlated with less discounting of options. However, we did find a relationship between both d and σ and search strategies 
(d: total attribute-based saccades: β = − 101.3, p = 0.002, total option-based saccades: β = − 152.4, p < 0.001; σ: total attribute-based saccades: β =

–33.5, p < 0.001, total option-based saccades: β = − 41.6, p < 0.001). This latter analysis suggests more attribute or option saccades were both 
associated with a slower slope accumulation towards a boundary and less noise in the decision process. 

Second, we looked at the relationship between search strategies, as measured by relative saccade patterns, and model parameters. In this analysis, 
we did not find a significant association between the search and model parameters (δ: relative attribute-based saccades: β = − 0.1, p = 0.143, relative 
option-based saccades: β = 0.0, p = 0.147; θ: relative attribute-based saccades: β = − 0.0, p = 0.846, relative option-based saccades: β = 0.0, p = 0.641) 
and (d: relative attribute-based saccades: β = − 0.0, p = 0.995, relative option-based saccades: β = − 2.1, p = 0.481; σ: relative attribute-based sac
cades: β = − 0.7, p = 0.407, relative option-based saccades: β = − 0.3, p = 0.621). 

Third, we clustered participants based on their search strategies to examine (1) whether clustering provided a reasonable separation of a par
ticipant’s search strategy (i.e., propensity to make more attribute-based vs. option-based saccades) and (2) whether clusters were associated with 
differences in estimated model parameters. To do this, we conducted a k-means clustering analysis and set k = 2 so that participants were clustered 
into one of two groups. We conducted this analysis by clustering on the type of saccades, as done in Reeck et al. (2017). 

Cluster 1 contained 19 participants and Cluster 2 contained 15 participants. We found that Cluster 1 made more attribute-based (Cluster 1 mean: 
1.93, Cluster 2 mean: 1.13; t(28.7) = 6.05, p < 0.001) and more option-based (Cluster 1 mean: 2.58, Cluster 2 mean: 1.43; t(32.0) = 5.07, p < 0.001) 
transitions, suggesting clustering operates based on the number of saccades, rather than the type of saccade. In fact, there was no difference between 
the relative proportion of attribute-based saccades (Cluster 1 mean: 39.0%, Cluster 2 mean: 39.8%; t(29.4) = 0.38, p = 0.707) or option-based saccades 
(Cluster 1 mean: 50.6%, Cluster 2 mean: 49.2%; t(31.7) = 0.80, p = 0.429). Overall, it appears that Cluster 1 made more saccades but did not exhibit a 
search strategy that was more attribute-based or option-based, compared to Cluster 2. 

Finally, we examined whether there were any differences in estimated model parameters between the clusters. We found that the clusters differed 
in their estimated σ (Cluster 1 mean: 0.06, Cluster 2 mean: 0.08; t(27.0) = 4.79, p < 0.001) and θ (Cluster 1 mean: 0.63, Cluster 2 mean: 0.43; t(25.5) =
2.18, p = 0.039), but not in their estimated d (Cluster 1 mean: 0.004, Cluster 2 mean: 0.006; t(16.3) = 1.55, p = 0.141) or δ (Cluster 1 mean: 0.71, 
Cluster 2 mean: 0.65; t(27.8) = 0.488, p = 0.629). This suggests that the cluster that searched more (i.e., Cluster 1) had significantly less noise enter the 
decision process and less discounting in the value of the unattended option. 

Appendix Table 1 (continued ) 

Participant ID d  σ  δ  θ  LL 

121  0.007  0.075 0.8 0.8 − 858.08 
122  0.004  0.055 0.9 0.9 − 862.08 
123  0.006  0.055 0.9 0.8 − 826.76 
124  0.005  0.08 0.6 0.4 − 859.94 
125  0.009  0.085 0.4 0.7 − 797.42 
126  0.004  0.08 0.9 0.2 − 848.98 
128  0.005  0.085 1 0.9 − 828.18 
129  0.004  0.07 0.2 0.9 − 868.48 
132  0.005  0.055 0.7 0.6 − 891.76 
133  0.005  0.06 0.4 0.5 − 851.86 
134  0.007  0.075 0.2 0.6 − 863.33 
135  0.003  0.04 0.5 0.2 − 918.32 
136  0.004  0.085 0.5 0.7 − 839.09 
137  0.003  0.075 1 0.5 − 848.82 
138  0.008  0.085 0.9 0.2 − 664.76 
139  0.003  0.085 0 0 − 842.40 
141  0.005  0.055 0.2 0.5 − 876.83 
142  0.008  0.085 0.1 0.3 − 748.82 
143  0.004  0.07 1 0.6 − 845.43 
144  0.003  0.10 1 0 − 811.84 
146  0.002  0.085 0.9 0 − 812.32 
147  0.006  0.075 1 0.6 − 847.98 

Note: Individual model estimates for the best fitting unrestricted model. LL denotes the log-likelihood. 
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Appendix D  

Appendix E. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.obhdp.2021.04.004. 
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Bee, N., Prendinger, H., Nakasone, A., André, E., & Ishizuka, M. (2006). Autoselect: What 
you want is what you get: Real-time processing of visual attention and affect. 
Perception and Interactive Technologies, 40–52. 

Bhatia, S. (2013). Associations and the accumulation of preference. Psychological Review, 
120(3), 522–543. 

Bhatia, S., & Stewart, N. (2018). Naturalistic multiattribute choice. Cognition, 179, 
71–88. 

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of 
visual motion: A comparison of neuronal and psychophysical performance. Journal 
of Neuroscience, 12(12), 4745–4765. 

Busemeyer, J. R., & Diederich, A. (2002). Survey of decision field theory. Mathematical 
Social Science, 43(3), 345–370. 

Busemeyer, J. R., & Johnson, J. G. (2004). In Handbook of Judgment and Decision Making 
(pp. 133–154). New York: Blackwell Publishing Co.  

Busemeyer, J. R., & Townsend, J. T. (1992). Fundamental derivations from decision field 
theory. Mathematical Social Sciences, 23(3), 255–282. 

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic cognitive 
approach to decision making in an uncertain environment. Psychological Review, 100 
(3), 432–459. 

Cavanagh, J. F., Wiecki, T. V., Kochar, A., & Frank, M. J. (2014). Eye tracking and 
pupillometry are indicators of dissociable latent decision processes. Journal of 
Experimental Psychology: General, 143(4), 1476–1488. 

Appendix Fig. 2. Observed versus model predicted response times. Each point plots the mean response time for a type of trial based on the difference in liking 
ratings. The 45 degree line is plotted to aid comparison. Response time plotted in seconds. 

Appendix Fig. 1. Individual estimates of δ and θ. Each point represents a participants’ estimate of the two parameters from Appendix Table 1. Note that a small 
amount of noise was added to each point (i.e., jittered) so that participants with identical estimates could be differentiated. 

G. Fisher                                                                                                                                                                                                                                          

https://doi.org/10.1016/j.obhdp.2021.04.004
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0005
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0005
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0010
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0010
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0015
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0015
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0015
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0020
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0020
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0020
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0025
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0025
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0030
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0030
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0035
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0035
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0035
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0040
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0040
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0045
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0045
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0050
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0050
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0055
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0055
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0055
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0060
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0060
http://refhub.elsevier.com/S0749-5978(21)00043-1/h0060


Organizational Behavior and Human Decision Processes 165 (2021) 167–182

182

Chandon, P., Hutchinson, J. W., Bradlow, E. T., & Young, S. H. (2009). Does in-store 
marketing work? Effects of the number and position of shelf facings on brand 
evaluation at the point of purchase. Journal of Marketing, 73(6), 1–17. 

Dawes, R. M., & Corrigan, B. (1974). Linear models in decision making. Psychological 
Bulletin, 81(2), 95–106. 

Dhar, R., & Nowlis, S. (1999). The effect of time pressure on consumer choice deferral. 
Journal of Consumer Research, 25(4), 369–384. 

Diederich, A. (1997). Dynamic stochastic models for decision making under time 
constraints. Journal of Mathematical Psychology, 41(3), 260–274. 

Diederich, A., & Oswald, P. (2016). Multi-Stage Sequential Sampling Models with Finite 
or Infinite Time Horizon and Variable Boundaries. Journal of Mathematical 
Psychology, 74, 128–145. 

Fisher, G. (2017). An attentional drift diffusion model of binary-attribute choice. 
Cognition, 168, 34–45. 

Fisher, G. (2021). Intertemporal choices are causally influenced by fluctuations in visual 
attention. Management Science. https://doi.org/10.1287/mnsc.2020.3732. 

Ghaffari, M., & Fiedler, S. (2018). The power of attention: Using eye gaze to predict 
other-regarding and moral choices. Psychological Science, 29(11), 1878–1889. 

Glaholt, M. G., Wu, M.-C., & Reingold, E. M. (2010). Evidence for top-down control of 
eye movements during visual decision making. Journal of Vision, 10(5). 

Glimcher, P. W., & Fehr, E. (2014). Neuroeconomics: Decision Making and the Brain. 
London: Elsevier.  

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review 
of Neuroscience, 30(1), 535–574. 

Gossner, Olivier and Steiner, Jakub and Stewart, Colin, Attention Please! (November 29, 
2018). University of Zurich, Department of Economics, Working Paper No. 308, 
2018, Available at SSRN: http://dx.doi.org/10.2139/ssrn.3300084. 

Guo, L., Trueblood, J. S., & Diederich, A. (2017). Thinking fast increases framing effects 
in risky decision making. Psychological Science, 28(4), 530–543. 

Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P., & Rangel, A. (2011). 
Transformation of stimulus value signals into motor commands during simple 
choice. PNAS, 108(44), 18120–18125. 

Hastie, R. (2001). Problems for judgment and decision making. Annual Review of 
Psychology, 52(1), 653–683. 
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Johnson, E. J., Häubl, G, & Keinan, A (2007). Aspects of Endowment: A Query Theory of 
Value Construction. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 33, 461–474. https://doi.org/10.1037/0278-7393.33.3.461. 

Johnson, E., & Schkade, D. (1989). Bias in utility and Assessments: Further Evidence and 
Explanations. Management Science, 35, 406–424. 

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value 
trade-offs. Cambridge University Press.  

Konovalov, A., & Krajbich, I. (2016). Gaza data reveal distinct choice processes 
underlying model-based and model-free reinforcement learning. Nature 
Communication, 7, 12438. 

Krajbich, I. (2019). Accounting for attention in sequential sampling models of decision 
making. Current Opinion in Psychology, 29, 6–11. 

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and comparison of value in 
simple choice. Nature Neuroscience, 13, 1292–1298. 

Krajbich, I., Lu, D., Camerer, C., & Rangel, A. (2012). The attentional drift-diffusion 
model extends to simple purchasing decisions. Frontiers in Cognitive Science, 3, 193. 

Krajbich, I., & Rangel, A. (2011). A multi-alternative drift diffusion model predicts the 
relationship between visual fixations and choice in value-based decisions. 
Proceedings of the National Academy of Sciences, 108, 13853–13857. 

Li, Y., & Epley, N. (2009). When the best appears to be saved for last: Serial position 
effects on choice. Journal of Behavioral Decision Making, 22(4), 378–389. https://doi. 
org/10.1002/bdm.638. 

Lim, S.-L., O’Doherty, J. P., & Rangel, A. (2011). The decision value computations in the 
vmPFC and striatum use a relative value code that is guided by visual attention. 
Journal of Neuroscience, 31(37), 13214–13223. 

Lindner, F., & Rose, J. (2017). No need for more time: Intertemporal allocation decisions 
under time pressure. Journal of Economic Psychology, 60, 53–70. 

Lohse, G. L. (1997). Consumer eye movement patterns on yellow pages advertising. 
Journal of Advertising, 26(1), 61–73. 

Meißner, M., Musalem, A., & Huber, J. (2016). Eye tracking reveals processes that enable 
conjoint choices to become increasingly efficient with practice. Journal of Marketing 
Research, 53(1), 1–17. 

Milosavljevic, M., Navalpakkam, V., Koch, C., & Rangel, A. (2012). Relative visual 
saliency differences induce sizeable bias in consumer choice. Journal of Consumer 
Psychology, 22, 67–74. 

Mullett, T. L., & Stewart, N. (2016). Implications of visual attention phenomena for 
models of preferential choice. Decision, 3(4), 231–253. 

Noguchi, T., & Stewart, N. (2014). In the attraction, compromise, and similarity effects, 
alternatives are repeatedly compared in pairs on single dimensions. Cognition, 132 
(1), 44–56. 

Oppenheimer, D. M., & Kelso, E. (2015). Information processing as a paradigm for 
decision making. Annual Review of Psychology, 66(1), 277–294. 

Orquin, J. L., & Mueller Loose, S. (2013). Attention and choice: A review on eye 
movements in decision making. Acta Psychologica, 144(1), 190–206. 

Pärnamets, P., Johansson, P., Hall, L., Balkenius, C., Spivey, M. J., & Richardson, D. C. 
(2015). Biasing moral decisions by exploiting the dynamics of eye gaze. Proceedings 
of the National Academy of Sciences of the United States of America, 112(13), 
4170–4175. 

Pettibone, J. C. (2012). Testing the effect of time pressure on asymmetric dominance and 
compromise decoys in choice. Judgment and Decision Making, 7, 513–523. 

Pieters, R., & Warlop, L. (1999). Visual attention during brand choice: The impact of time 
pressure and task motivation. International Journal of Research in Marketing, 16(1), 
1–16. 

Plassmann, H., O’Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes 
willingness-to-pay in simple economic transactions. Journal of Neuroscience, 27(37), 
9984–9988. 

Plassmann, H., O’Doherty, J. P., & Rangel, A. (2010). Appetitive and aversive goal values 
are encoded in the medial orbitofrontal cortex at the time of decision making. 
Journal of Neuroscience, 30(32), 10799–10808. 

Rangel, A. & Clithero, J.A. (2013). The Computation of Stimulus Values in Simple 
Choice. Neuroeconomics: Decision-Making and the Brain, 2nd ed. (edited by Paul 
Glimcher and Ernst Fehr), 125-147. 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. 
Ratcliff, R. (1980). A note on modeling accumulation of information when the rate of 

accumulation changes over time. Journal of Mathematical Psychology, 21(2), 
178–184. 

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two- 
choice reaction time. Psychological Review, 111(2), 333–367. 

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: 
current issues and history. Trends in Cognitive Science, 20(4), 260–281. 

Read, D., & van Leeuwen, B. (1998). Predicting hunger: the effects of appetite and delay 
on choice. Organizational Behavior and Human Decision Processes, 76(2), 189–205. 

Reeck, C., Wall, D., & Johnson, E. J. (2017). Search predicts and changes patience in 
intertemporal choice. Proceedings of the National Academy of Sciences, 114(45), 
11890–11895. 

Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative decision field 
theory: A dynamic connectionist model of decision making. Psychological Review, 108 
(2), 370–392. 

Saqib, N. U., & Chan, E. Y. (2015). Time pressure reverses risk preferences. Organizational 
Behavior and Human Decisions Processes, 130, 58–68. 

Shimojo, S., Simion, C., Shimojo, E., & Scheier, C. (2003). Gaze bias both reflects and 
influences preference. Nature Neuroscience, 6(12), 1317–1322. 

Simonson, I. (1989). Choice based on reasons: The case of attraction and compromise 
effects. Journal of Consumer Research, 16(2), 158. https://doi.org/10.1086/ 
jcr.1989.16.issue-210.1086/209205. 

Smith, S. M., & Krajbich, I. (2019). Gaze amplifies value in decision making. Psychological 
Science, 30(1), 116–128. 

Stüttgen, P., Boatwright, P., & Monroe, R.T. (2012). A Satisficing Choice Model. 
Marketing Science, 31, 6, 878-899. 

Sütterlin, B., Brunner, T. A., & Opwis, K. (2008). Eye-tracking the cancellation and focus 
model for preference judgments. Journal of Experimental Social Psychology, 44(3), 
904–911. 

Svenson, O., & Benson, L., III. (1993). Framing and time pressure in decision making. In 
O. Svenson & A. J. Maule (Eds.), Time pressure and stress in human judgment and 
decision making (pp. 133–144). New York, NY: Springer. 

Tavares, G., Perona, P., & Rangel, A. (2017). The Attentional Drift Diffusion Model of 
Simple Perceptual Decision-Making. Frontiers in Neuroscience. 

Towal, R. B., Mormann, M., & Koch, C. (2013). Simultaneous modeling of visual saliency 
and value computation improves predictions of economic choice. Proceedings of the 
National Academy of Sciences, 110(40), E3858–E3867. 

Trueblood, J. S., Brown, S. D., & Heathcote, A. (2014). The multiattribute linear ballistic 
accumulator model of context effects in multialternative choice. Psychological 
Review, 121(2), 179–205. 

Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven value integration explains 
decision biases and preference reversal. Proceedings of the National Academy of 
Sciences, 109(24), 9659–9664. 

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. 
Science, 185(4157), 1124–1131. 

Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition in dynamical models 
of multialternative choice. Psychological Review, 111(3), 757–769. 

Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: the leaky 
competing accumulator model. Psychological Review, 108(3), 550–592. 

Weber, E. U., Johnson, E. J., Milch, K. F., Chang, Brodscholl, J. C., & Goldstein, D. G. 
(2007). Asymmetric discounting in intertemporal choice: A query-theory account. 
Psychological Science, 18(6), 516–523. https://doi.org/10.1111/j.1467- 
9280.2007.01932.x. 

Wedel, M., & Pieters, R. (2000). Eye fixations on advertisements and memory for brands: 
A model and findings. Marketing Science, 19(4), 297–312. https://doi.org/10.1287/ 
mksc.19.4.297.11794. 
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